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Abstract—More than ever before, planners and policy makers
need tools to anticipate and assess the impact of their decisions
on the spatial system that they are to manage. A growing
number of high resolution models is currently being developed
for this purpose. The calibration of these models remains a
major challenge. Typically the required time series of land-use
maps based on identical and consistent mapping methodologies,
legends and scales are missing. The availability of images from
earth observation satellites is much larger. However, conventional
remote sensing based land-use classifications result in land cover
maps, based on reflective properties of the surface, rather than
land-use maps representing the functional classes needed for
urban land-use change modeling. Recently, landscape metrics or
spatial metrics have been introduced in the field of urban land-
use mapping and modeling to characterize the spatial dynamics
of such systems. The question raised in the study presented is
whether spatial metrics directly applied to remote sensing images
can be used to calibrate and validate land-use models of urban
systems. The underlying hypothesis is that a methodology can
be developed which enables to calculate metrics on both the
remote sensing image and the predicted land-use map, which
quantify the same distinguishing spatial structures at some level
of abstraction. The study demonstrates the potential of spatial
metrics to simplify and speed up the calibration procedures in
so far that the development of land-use maps could be avoided.

I. INTRODUCTION

An increasing number of dynamic land-use change models
is currently being developed in order to provide tools for plan-
ners and policy makers who need them to anticipate and assess
the impact of their decisions on the spatial system that they
are to manage [1]. For a proper calibration of these models
typically a time series of land-use maps is needed. Often,
however, time series of land-use maps are lacking. Even when
time series exist, inconsistencies in mapping methodologies,
legends and scales result in measured land-use changes that
are caused by mismatches in the mapping procedures rather
than an indication of real changes in the land-use patterns of
interest.
Since several decades, earth observation satellites provide

images of the earth’s surface. The long time series of medium
resolution sensors like Landsat TM/ETM+ and SPOT HRV

offer interesting possibilities of increasing the data to be
used for the historic calibration of land-use change models.
Compared to land-use maps, the potential temporal availability
of medium resolution remote sensing images is relatively high
and depends on their ground track repeat cycle which is
typically between 1 and 16 days. In addition, the spatial and
temporal consistency of a time series of remote sensing images
is better than for land-use maps. However, the spatio-temporal
consistency and availability heavily depend on atmospheric
conditions. Land-use change models typically predict land-
use in time steps of 1 year and a spatial resolution of 50-
500 meters, making the temporal and spatial resolution of
medium resolution remote sensing images sufficient for their
calibration.
Remote sensing based land-use classification algorithms

can easily derive reflective properties of the earth’s surface,
resulting in land cover maps. For the purpose of land-use
change modeling land-use classes are needed, which are linked
to socio-economic activities and, as such, cannot be directly
inferred from spectral information only [2]. Previous studies,
however, have demonstrated a strong relationship between the
spatial structure of the built-up environment and its functional
characteristics [3]. The link between land-use and urban form
is a key element in visual interpretation of remotely sensed
imagery of urban areas. It also led to the development of
different (semi-)automated approaches for urban mapping that
make use of structural and contextual information present in
the image, or derived from ancillary data sources [4].
A rather novel approach to describe urban form and struc-

ture is by means of spatial metrics. Spatial metrics describe
various properties of the spatial heterogeneity and configu-
ration of land cover in a given area. Originally developed
for landscape ecological research, they have recently been
shown to have considerable potential for the analysis of urban
environments [5]–[8].

978-1-4244-3461-9/09/$25.00 c© 2009 IEEE



Research associating spatial metrics and changes in these
metrics to urban change processes is still at an early stage,
yet the potential of linking changes in spatial metrics to
specific processes of urban development has already been
demonstrated [6], [7].
This research proposes a framework for the historic calibra-

tion of land-use change models using remote sensing data. The
framework includes three steps: (1) Pixel-based classification
of medium resolution remote sensing images; (2) contextual
re-classification based on spatial metrics using the Optimized
Spatial Reclassification Kernel (OSPARK) algorithm, and (3)
Calibration of a land-use change model, based on spatial
metrics calculated at different levels of spatial abstraction.
The performance of the OSPARK algorithm will be tested for
different scenarios of pixel-based classifications that are used
as an input to the algorithm.
The proposed framework has been developed for the calibra-

tion of the MOLAND (Monitoring Land Use/Cover Dynamics)
land-use change model [9] applied to Dublin. The model will
be introduced in the next section, followed by an explanation
of the concept of the calibration framework, the OSPARK
algorithm and the different pixel-based classification scenarios
that are tested. The scenario with the best performance will
be used for the calibration of the MOLAND model in future
studies.

II. METHODS

A. The MOLAND Land-Use Change Model

The calibration framework proposed in this study has been
developed for the MOLAND (Monitoring Land Use/Cover
Dynamics) model [9], applied to Dublin (Ireland). The core
of this urban and regional growth model is a constraint
cellular automata [10] that models the spatial dynamics of
the system. The model input consists of five GIS datasets for
the geographical area of interest: (a) actual land use types; (b)
accessibility of the area to the transport network; (c) inherent
suitability of the area for different land-uses; (d) zoning status
(i.e. legal constraints) of the area for different land-uses;
(e) socio-economic characteristics (e.g. population, income,
production, employment) of the area. The model explores the
likely future development of land-use over the next thirty years
in time-steps of one year for each grid cell of 4 ha, given
alternative planning and policy scenarios and socio-economic
trends.
The calibration of any model with the level of complexity of

the MOLAND model is not trivial and requires time and effort.
The main reason is that in principle every model grid cell
represents at least one state variable in the model. The task of
the calibration is to ensure that the model behaves in a realistic
manner and is able of generating existing spatial patterns. The
calibration of the MOLAND model [9] is a heuristic procedure
based on trial-and-error. It requires a reference (or ’training’ or
’historical’) land-use map, from which the actual map (i.e. the
most recent available map) is reconstructed. The comparison
between the reconstructed and the actual map is performed by
means of dedicated goodness-of-fit measures. These consist

of a number of statistical indicators such as mean patch area,
shape index and proximity index, Simpson’s diversity index,
Kappa Statistic, the Kappa Histo, the Kappa Location and the
Fuzzy Kappa [11]. In addition to the calculation of statistics,
the comparison is performed by means of GIS procedures.
The calibration consists of four steps: (1) a first set of

approximate values of the parameters describing the neighbor
influence function (attraction-repulsion parameters) is fixed.
Generally, parameters are coming from previous applications
of the model; (2) a second parameter (the stochastic parameter
α) is then fixed. α determines largely the scatterness of the
land-use patterns and size of clusters; (3) further information
such as maps of suitability, accessibility and zoning are then
introduced; (4) then the fine tuning of the model starts (repeat-
ing of loop 1-2-3 with dedicated statistical analysis). The steps
are repeated until the reconstructed map satisfactorily matches
with the actual map.
For a successful calibration, the calibration period should be

sufficiently long in order to give the underlying processes in
the system enough time to manifest themselves in a representa-
tive way. The poor availability of high quality and comparable
land-use maps often constrains the choice of the calibration
period. In the Dublin application of the MOLAND model,
used in this study, the required maps are only available for
1990 and 2000, constraining the calibration to this period. It
is hypothesized that the proposed remote sensing based cal-
ibration framework, explained next, can increase the amount
data for the historic calibration, resulting in better predictions
of the land-use change model.
Table I gives the land-uses classes in the MOLAND model

and their surface area in 1990 and 2000 based on the land-use
maps.

B. Concept of the Calibration Framework

Figure 1 shows the concept of using spatial metrics for
the calibration of land-use change models that is proposed
in this study. The procedure can be applied each time a
remote sensing image is available within the model calibration
period (Fig. 2). The remote sensing image is first classified
using pixel-based techniques. Next, spatial metrics are used
to identify the land-use classes. Existing land-use maps are
used for calibrating the metrics-based classification. Finally,
the remote sensing derived land-use map can be compared
with the output of the land-use change model for the same
year. Depending on the objective of the land-use change model
or the stage in its development (calibration or application) the
modeler has the choice to optimize: (1) the overall pattern
in model predictions, based on landscape-level metrics; (2)
patterns within land-use classes, based on class-level metrics
and (3) patterns at the moving window-level or pixel level.
The spatial metrics used in the calibration of land-use

change models should be chosen in accordance with the
objectives of the model. This study will focus on the evolution
of urban sprawl. For urban sprawl the metrics should quantify
density characteristics, land-use and activity characteristics,
fragmentation and scattering, decentralization characteristics



TABLE I

LAND-USE CLASSES OF THE MOLAND MODEL AND THEIR SURFACE AREA (NR. OF CELLS OF 4 HA) IN THE LAND-USE MAPS OF 1990 AND 2000.

RECODE INDICATES THE RECLASSIFICATION IN MERGED CLASSES (SEE TABLE VI

Class Area 1990 Area 2000 Recode

Arable land 4248 6736 1

Pastures 20082 15952 1

Heterogeneous agricultural areas 0 115 1

Forests 1213 1295 2

Semi-natural areas 2247 2219 2

Wetlands 102 113 2

Abandoned 0 0 3

Residential continuous dense urban fabric 28 29 3

Residential continuous medium dense urban fabric 24 29 3

Residential discontinuous urban fabric 56 1057 3

Residential discontinuous sparse urban fabric 4078 3774 3

Industrial areas fabric 662 900 4

Commercial areas 205 236 4

Public and private services 546 597 4

Port areas 23 25 4

Construction sites 147 193 5

Road and rail networks and associated land 92 135 4

Airport 219 213 6

Mineral extraction sites 118 94 5

Dump sites 68 97 5

Artificial non-agricultural vegetated areas 2140 2451 7

Restricted access areas 10 8 8

Water bodies 5692 5732 8

Fig. 1. Concept of using remote sensing derived metrics in the calibration
of land-use change models

and accessibility characteristics [6]. In this study some of the
spatial metrics suggested by Torrens [6] are used. For the
equations of the metrics it is referred to the publication of
Torrens [6]. The Shannon’s Diversity Index (SHDI) is used to
quantify land-use and activity characteristics. The SHDI value
reaches zero when there is no diversity at all and increases
with increasing diversity. For fragmentation and scattering
the Perimeter-Area Fractal dimension (PAFRAC), Contagion
(CONTAG) and the Interspersion and Juxtaposition Index (IJI)
are used. The PAFRAC metric will result in a value of 1

Fig. 2. Application of the Calibration Framework

when the land-use is unfilled and a value of 2 when the
urban landscape is compact. CONTAG is used to calculate
the spatial configuration and structure of activities, it is zero
for landscapes without fragmentation and 100 for regions that
have a maximum fragmentation. IJI is similar, but for patches
in stead of pixels. The metrics are calculated at landscape-
level and moving window-level and the results are compared
for the land-use maps and remote sensing images.

The proposed framework is calibrated and validated using
the land-use maps of 1990 and 2000 [9] and the Landsat
TM5 image of June 13 1988 and the Landsat ETM7 image of



Fig. 3. Flowchart of the OSPARK algorithm

May 24 2001 (Fig. 2). In future research the framework will
be applied to Landsat TM5 images of 1994, 1997 and other
images within the calibration period.

C. The Optimized Spatial Reclassification Kernel (OSPARK)

For the metric-based classification the OSPARK algorithm
has been developed. The algorithm facilitates the reclassifi-
cation of per-pixel classified remote sensing images, using
moving window-level spatial metrics. The algorithm is based
on the SPAtial Reclassification Kernel (SPARK) [12] algo-
rithm, which has been extended to automatically optimize the
kernel size (size of the moving window) to the spatial variation
detected around the center pixel of the kernel. The flowchart
of the algorithm is shown in Fig. 3.
In this study the adjacency event spatial metric is calculated

for each pixel iteratively for kernel sizes with a radius ranging
from 1 to 30 pixels. This metric results for each pixel in a
matrix (M). Within each M-matrix the frequency and spatial
arrangement of the pixel-based classes positioned next to each
other as well as diagonally are counted. Each pair of pixels
is called an adjacency event. The results of counting the
adjacency events are expressed by an adjacency event matrix
(Fig. 4).
During each iteration step, i.e. for each kernel size, the

adjacency event matrix of each pixel is compared with the
template adjacency event matrices (Tk). The Tk matrices are
calculated from template kernels that are representative for the
land-use classes to be derived and are in that sense comparable
to training areas in per-pixel classifications. Since OSPARK
iterates over the kernel sizes, the size of the template kernels
should match the kernel radius of each iteration step. The
comparison of the M matrix with the Tk matrix results in
a ∆k value, which is the index of similarity. ∆k is calculated
with [12]:

∆k = 1 −
√√√√0.5 · N−2 ·

c∑
i=1

c∑
j=1

(
Mij − Tkij

)2
(1)

Fig. 4. Simulated 3 by 3 kernels of different urban land-use types with
corresponding frequency table and adjacency event matrix. Only the upper
triangle is considered because Mij = Mji. B = building, G = grass and T
= trees. (After [13])

where M is the adjacency event in an i by j matrix, Tk is a
template matrix for land-use class k, N is the total number of
adjacency events in the kernel and c is the number of classes
in the per-pixel classified input map. ∆k can range from 0 to
1. If ∆k equals 0, Mij is completely different from any Tk,
while a value of 1 means that they are identical.
Finally, after all iterations, each pixel in the input image

is assigned to the land-use class of the corresponding Tk

matrix with the first local maximum in ∆k when increasing
the kernel size. The local maximum is chosen, because larger
template matrices tend to be less unique for a particular land-
use type [8]. Therefore after one or several local maxima ∆k
will increase with increasing kernel size. The local maximum
should be above a user-defined minimum ∆k value to prevent
classification results with pixels with a low ∆k value. The
procedure is summarized in Fig. 3.

D. Calibration and validation of OSPARK

In order to apply the OSPARK algorithm to different
images, the algorithm needs to be calibrated and validated.
It is assumed that the Landsat TM5 image of June 13 1988
corresponds with to land-use map of 1990 and the Landsat
ETM7 image of May 24 2001 corresponds to the land-use
map of 2000. The calibration procedure is illustrated in Fig.
5.
OSPARK applied to the Landsat image of 1988 is calibrated

with the land-use map of 1990, using the following procedure
(Fig. 5(a)): (1) Calculate a per-pixel classification; (2) Store
the signatures or endmembers of the per-pixel classification;
(3) Select center coordinates of template kernels for the de-
sired land-use classes by random sampling locations from the
land-use map and store x-coordinate, y-coordinate and class
number. 50 samples per land-use class were used in this study;
(4) Run OSPARK and store the Tk matrices for each kernel
size; (5) In order to compare the OSPARK classification results
(30 m resolution) with the land-use map (200 m resolution),
a majority filter with a window size of 4 ha is applied to
the OSPARK result; (6) Assess the accuracy of the result by



(a) OSPARK Calibration (b) OSPARK Validation

Fig. 5. Calibration (a) and Validation (b) of the OSPARK algorithm

comparing the OSPARK result at 200 m resolution with the
land-use map of 1990. This procedure is applied to different
scenarios of pixel-based classifications (see next subsection).
The scenario that gives the highest accuracy with the

OSPARK algorithm is applied to the Landsat ETM7 image
of 2001 and validated with the land-use map of 2000 (Fig.
5(b)), using the following procedure: (1) Apply the per-pixel
classification that gave the best results for the image of 1988
with the stored signatures or endmembers to the image of
2001; (2) Apply OSPARK to this per-pixel classification result
with the stored Tk matrices of 1988; (3) Apply the majority
filter in the same way as for 1988; (4) Assess the accuracy of
the OSPARK result of 2001 with the land-use map of 2000.
If the validation results are good enough, the per-pixel signa-

tures or endmembers and OSPARK templates are transferable
to other images.

E. Pixel-Based Classification Scenarios

Four different pixel-based classification scenarios have been
evaluated as an input for the OSPARK algorithm: (1) Iterative
Self-Organizing Data Analysis (ISODATA [14]); (2) Koho-
nen Self-Organizing Maps (SOM [15]); (3) Linear Spectral
Mixture Analysis (LSMA [16]) with endmembers representing
high albedo substrate, bright vegetation and dark surfaces
(SVD [17]) and (4) Linear regression analysis for impervious
fraction. This scenario will be referred to as ”Impervious”.
1) ISODATA: ISODATA [14] is an unsupervised classi-

fication algorithm that is commonly used. It is a iterative
clustering algorithm: (1) The algorithm initializes by assigning
an arbitrary initial cluster vector; (2) each pixel in the image is
classified to the nearest cluster; (3) New cluster mean vectors
are calculated based on all pixels in a cluster. Step (2) and
(3) are repeated until the difference between the iterations are
small. The algorithm performs best when clusters are spherical
and have the same variance, which is often not the case for
remote sensing images, especially in urban areas.
2) SOM: Another unsupervised classification approach is

based on Kohonen self-organizing maps (SOM) [15]. A SOM
is a type of artificial neural network that was originally

developed to visualize topologies and hierarchical structures
of multi-dimensional data by transforming the input space
into an ordered two dimensional map. The SOM architecture
consists of two network layers: an input layer, which is fully
connected to a typically two dimensional array of nodes called
Kohonen layer or codebook vector map. A weight vector of
the same dimension as the input data vectors is associated
with each node. The weight vectors are initalised randomly
or by evenly sampling the subspace formed by the first two
principal components. The SOM is trained by passing an input
vector (i.e. a pixels spectral values) to the network, and by
choosing a winning node based on the smallest Euclidian
distance between the input vector and the weight vectors.
Then, the weights of the winning node and its neighbors are
adjusted in order to reduce the nodes distance to the input
vector. After each image pixel or a representative set of image
pixels is passed to the SOM during training, the built model
can be applied to any part of the image and even to other
images when atmospheric or other calibration constraints are
taken into account. Because the trained SOM network assigns
each pixel to a particular node in the codebook vector, each
such node can be considered to represent a certain information
category. This is similar to other unsupervised classification
approaches, except that nodes or classes that are closer to each
other on the codebook vector are also more spectrally similar.
In this research, we applied a SOM with a 3 by 5 Kohonen
layer, which divides the image into 15 spectral classes.

3) SVD: Linear spectral mixture analysis (LSMA) is a
common approach to sub-pixel classification whereby a pixels
observed reflectance is modeled as a linear combination of
spectrally pure endmember reflectances. Each endmember
contributes proportionally to the overall spectral response
according to its relative abundance within the sensors instanta-
neous field of view (IFOV). To estimate the fractional cover of
each endmember within a given pixel, the following equation
has to be solved for all image bands simultaneously, using a



least squares approach:

Rb =
n∑

i=1

firi,b + eb (2)

where Rb is the reflectance of the pixel for band b, f i is
the proportion of endmember i within the pixel, r i,b is the
reflectance of endmember i for band b, n is the number of
endmembers and eb the error of fit for band b [18]. Invert-
ing this system of mixing equations to retrieve endmember
fractions that best fit the observed mixed reflectances implies
determining the optimal location of endmembers in feature
space. The VIS model is a useful concept for urban analysis
because it allows representing any urban area by three physical
components: vegetation (V), impervious surfaces (I) and soil
(S), in addition to water [19]. However, not all pure vegeta-
tion, impervious surfaces or bare soil pixels occupy extreme
positions in feature space and can, as such, not be directly
used as endmembers for unmixing. Instead, the apexes of
the typical triangular shaped feature space correspond to true
biophysical endmembers representing high albedo substrate
(S), bright vegetation (V) and dark surfaces (D) [17]. Any
pixel falling inside the convex hull circumscribing the apexes
can be considered as a mixture of these three components,
and not of V-I-S. One reason for this is that endmembers are
spectrally variable because of brightness differences [16]. In
mixture space, pure vegetation pixels are mostly located on
the vegetation dark axis, indicating binary mixing between
these two endmembers. Darker vegetation types such as trees
are located closer to the dark endmember, while brighter
vegetation types such as grass or crops are typically found
closer to the vegetation endmember. Binary mixing on the grey
axis between the dark and substrate endmembers represents
different types of urban surfaces, e.g. asphalt versus concrete,
while binary mixing on the vegetation high albedo substrate
axis is extremely rare [17]. This complicates the direct use of
the VIS ternary as an appropriate model for unmixing. Instead,
the SVD unmixing model is applied on the Dublin study area.
The S and D endmembers for each image are chosen to be
identical to the bright and dark pseudo-invariant features that
were used for the radiometric calibration. The V endmembers
are selected from the extreme pixels on the vegetation axis in a
feature space visualization of each image of our time-series by
means of high-order principal components. To discretize the
continuous output of the LSMA, each of the three components
of the SVD unmixing model is first split into 5 subcategories
based on equal proportion intervals. Then, the 53 theoretically
possible endmember class combinations are assigned a unique
identifier (CN) based on:

CN = Sc · 52 + Vc · 5 + Dc (3)

where Sc, Vc and Dc are the class numbers (0-4) of the sub-
strate, vegetation and dark surface endmembers respectively.
4) Impervious: Because LSMA with the SVD endmembers

does not provide actual land-cover information, a second sub-
pixel classification approach is adopted. In this approach, a

linear regression model is developed to estimate the proportion
of vegetation cover within each Landsat pixel. Discounting
for a moment the presence of water and exposed soil, the
vegetation fraction within a pixel can be considered as the
complement of the man-made, sealed surface proportion. The
reference data required to build the model are obtained from
downsampling an existing land-cover map, which was created
from the available Quickbird image. Temporal differences in
vegetation cover between the ETM+ images and the land-cover
map were filtered out by a temporal filtering technique based
on iterative linear regression between NDVI values [20]. Since
the regression model only estimates vegetation, and therefore
does not explicitly distinguish urban from non-urban surface
cover, an urban mask is developed to indicate pixels belonging
to urban land cover. Only pixels within this mask are subjected
to the regression model. The sealed surface proportions of all
pixels outside the mask are considered zero. To create this
mask, we apply a non-parametric unsupervised classification
approach based on Kohonen self-organizing maps (SOM) [15]
and enhance the output map with knowledge-based post-
classification rules [21], [22]. The resulting urban mask has an
overall accuracy of 93% and a kappa index of agreement of
89%. The RMSE error of the estimated sealed surface fractions
is 0.14. To make the estimated sealed surface proportions
discrete, they are split into 5 classes using natural breaks [23].

F. Spectral Normalization

Prior to applying the best OSPARK scenario to images of
different dates according to the calibration framework, the
reflectance in the images need to be normalized. The raw
digital numbers of the images in our time-series are converted
to exoatmospheric reflectance according to the formulas and
calibration parameters presented by The Landsat 7 Users
Handbook [24]. While this conversion removes predictable
effects caused by differences in solar irradiance and solar
angle, it does not take into account the influence of atmo-
spheric condition and sensor drift on the measured radiances.
To quantify changes in surface reflectance between the two
acquisition dates with spectral mixture analysis, the impact of
temporal spectral variability that is not caused by changes in
surface reflectance should therefore be minimized. Because no
atmospheric data or field measurements of ground reflectance
are available, a relative reflectance calibration based on the
identification of pseudo-invariant features [25] is applied. By
visually comparing the four images, nine sites are selected for
which the surface reflectance is not expected to have changed
in between the acquisition dates. Three are chosen to represent
high albedo surfaces: highly reflective roofs of commercial or
industrial buildings in the port area. Three low albedo sites
are selected on the Liffy River in central Dublin, and three
sites with asphalt are selected on the airport runway. Because
at-sensor radiances vary linearly with ground reflectances for
visible and short wave infrared wavelengths [26] and because
this relationship can be extended to multidate images [27],
the pseudoinvariant features of each image can be linearly
transformed to give them the same apparent reflectance as



TABLE II

ACCURACY ASSESSMENT OF OSPARK FOR DIFFERENT PER-PIXEL

CLASSIFICATION SCENARIOS (ALL CLASSES). K = KAPPA

Scenario K Fr. Correct Fuzzy K Fuzzy Fr. Correct

ISODATA 0.25 0.33 0.11 0.48

SOM 0.32 0.44 0.21 0.57

SVD 0.40 0.52 0.30 0.66

Impervious 0.24 0.32 0.14 0.33

TABLE III

NUMBER OF CLASSES (ALL CLASSES) FOR WHICH THE STATISTICS SHOW

A VALUE LARGER THAN 0.5. USER = USER’S ACCURACY, PRODUCER =

PRODUCER’S ACCURACY, K = KAPPA

Scenario K User Producer Fuzzy K Total

ISODATA 1 3 5 1 10

SOM 2 4 8 2 16

SVD 2 3 9 2 16

Impervious 4 5 4 2 15

the 1994 reference image [28]. The estimated linear function
between the pseudo-invariant sites of the four images can then
be applied on the entire 1988, 1997 and 2001 images to reduce
temporal spectral variability caused by the combined impact
of differences in illumination, sensor drift and atmosphere.

III. RESULTS

A. Per-Pixel Classification Scenarios

Table II shows the contingency matrix statistics of the
accuracy assessment when all 23 MOLAND land-use classes
are considered. The statistics show that SVD gives the best
overall classification result, while the linear regression analysis
for impervious fraction gives the worst result. All Kappa’s and
Fuzzy Kappa’s, however, are lower than 0.50 indicating many
classification errors. Table III shows for each scenario the
number of classes that has a value larger than 0.50 for Kappa,
user’s accuracy, producer’s accuracy [29] and Fuzzy Kappa.
Only for SVD these classes were functional urban classes (e.g.
residential areas).

B. Merged Classes

When all classes of the MOLAND model are considered,
the accuracies of the OSPARK classification for each class
remain low for all pixel-based classification scenarios. There-
fore the original 23 classes are recoded to 8 classes following
Table I. The legend is given in Table VI. Reclassification is
also needed, because the area of some classes is too small
to be detected by a contextual classifier. Furthermore, incon-
sistencies between the two land-use maps for the residential
classes were observed.
The accuracy assessment has also been done on merged

land-use classes. Table IV shows that the overall accuracy
results of the merged classes are much better than the results

TABLE IV

ACCURACY ASSESSMENT OF OSPARK FOR DIFFERENT PER-PIXEL

CLASSIFICATION SCENARIOS (MERGED CLASSES). K = KAPPA

Scenario K Fr. Correct Fuzzy K Fuzzy Fr. Correct

ISODATA 0.60 0.73 0.44 0.80

SOM 0.57 0.71 0.41 0.78

SVD 0.63 0.75 0.47 0.81

Impervious 0.65 0.81 0.47 0.83

TABLE V

NUMBER OF CLASSES (MERGED CLASSES) FOR WHICH THE STATISTICS

SHOW A VALUE LARGER THAN 0.50. USER = USER’S ACCURACY,

PRODUCER = PRODUCER’S ACCURACY, K = KAPPA

Scenario K User Producer Fuzzy K Total

ISODATA 4 3 5 2 14

SOM 3 4 5 1 13

SVD 4 4 7 3 18

Impervious 3 4 3 2 12

for 23 classes (Table II). All Kappa’s are above 0.50 and the
(Fuzzy) fraction correct is high for all scenarios. On the other
hand, the Fuzzy Kappa’s are lower than 0.50, indicating that
the overall spatial patterns are not well reproduced by the
classification scenarios. The Impervious scenario shows the
best overall results.
Table V shows for each scenario the number of classes

that has a value larger than 0.50 for Kappa, user’s accuracy,
producer’s accuracy and Fuzzy Kappa, comparable to Table
III. The scores are better for the merged classes than for
all 23 classes. The best results are obtained for the SVD
scenario. The Impervious scenario gives the worst results when
the classes are considered individually. Therefore, the SVD
method has been chosen to provide the input pixel-based
classification for the OSPARK algorithm, deriving the merged
classes of Table VI. The next section gives the results of the
validation of OSPARK using data for the year 2000.

C. Validation of OSPARK

The SVD pixel-based classification scenario that gave the
best results for the year 1990 has been applied to the Landsat
ETM7 image of 2001. The output land-use classes resulting
from the OSPARK algorithm were merged (Table VI) and
compared with the land-use map of the year 2000. The
validation results (Table VI) show that for all merged land-use
classes the results of 2000 are worse compared to 1990. The
most important differences are the decrease in producer’s accu-
racy for ”Non-residential urban areas” and ”Airports” below a
value of 0.50. Although the accuracies of the classification for
the year 2000 are reduced, the results for residential areas are
acceptable. Residential areas are the most important land-use
class to be considered, when studying urban sprawl.
In order to evaluate the land-use structures, the differences



TABLE VI

COMPARISON OF USER’S AND PRODUCER’S ACCURACY OF OSPARK APPLIED TO 1990 AND 2000

Recode Class
Year 1990 Year 2000

User Producer User Producer

1 Agricultural land 0.94 0.80 0.92 0.66

2 (Semi-) natural land 0.52 0.74 0.49 0.67

3 Residential areas 0.71 0.62 0.65 0.59

4 Non-residential urban areas 0.31 0.53 0.23 0.41

5 Construction, mining & dump sites 0.09 0.66 0.05 0.55

6 Airports 0.24 0.58 0.06 0.29

7 Artificial non-agricultural areas 0.28 0.19 0.14 0.09

between the land-use maps and OSPARK classification were
checked for the different metrics that are important indicators
for urban sprawl, i.e. PAFRAC, CONTAG, SHDI and IJI. The
metrics are calculated in a circular moving window of 1600
m radius. This radius corresponds with the definition of the
distance decay functions of the cellular automata model in the
MOLAND model [9]. Next, the Fuzzy Kappa is calculated for
different map pairs. The results show for all metrics that the
Fuzzy Kappa is higher between the land-use maps of 1990 and
2000, than between the land-use maps and their corresponding
OSPARK classification. Also the Fuzzy Kappa between the
OSPARK classifications is high.

IV. DISCUSSION

In this paper a framework for the historic calibration of
land-use change models using remote sensing data has been
proposed. The framework needs calibration using two land-use
maps. Inconsistencies between the land-use maps can affect
the calibration accuracy. The results show on the other hand
that the land-use maps of 1990 and 2000 are very comparable
in terms of urban sprawl, in contrast with their corresponding
OSPARK classification. Also the OSPARK classifications of
different dates give comparable results for the urban sprawl
metrics. This suggests that the amount of noise in the remote
sensing classification and the amount of generalization in the
land-use maps is comparable.
The current application of the OSPARK algorithm uses the

adjacency event metric. Further research should be done to de
incorporation of other spatial metrics or sets of spatial metrics.
If a set of metrics proves to be generally applicable to urban
landscapes to differentiate between different urban land-use
classes, the training phase has to be done only once to derive
the appropriate Landscape Metrics Signatures (LMS) [30] for
each class. When other metrics are used, the ∆k similarity
index should be replaced by an appropriate goodness-of-fit
measure. Another modification to the OSPARK algorithm is
the use of a circular kernel in stead of a square kernel, as used
in the cellular automata algorithm of the MOLAND model.
This could reduce artifacts in the classification.
The OSPARK classification of the Landsat ETM7 image of

2001 gave less good results. This could be caused by errors
in the normalization, which can give errors in the transfer

of endmembers and templates. Also inconsistencies between
the land-use maps can give errors in the validation of the
results. A third problem is the discretization of SVD. For
different images it can result in a different number of unique
combinations. When template kernels contain SVD classes that
do not exist in the image to which it is applied, the template
is not used. When the image to which OSPARK is applied has
some other SVD classes than the image used for calibration
of the OSPARK algorithm, kernels containing these pixels can
not be classified with the current algorithm.

V. CONCLUSIONS

Spatial metrics derived from remote sensing data can in-
crease the amount of data used for the calibration of land-use
change models, making them less dependent on land-use maps.
This study proposed a framework for the calibration of land-
use change models using remote sensing data. The framework
consists of a contextual, metric-based, classification algorithm,
OSPARK. OSPARK results have been evaluated for four
scenarios of pixel-based classifiers that provided input data
for the algorithm. The OSPARK algorithm in combination
with the SVD unmixing algorithm gave the best results for
the Landsat TM5 image of 1988. The accurate discrimination
of all 23 land-use classes of the MOLAND model was not
possible. Reclassification into 8 classes, while preserving the
differentiation in important classes gave good results.
Application of OSPARK to an SVD classification of a

Landsat ETM7 image of 2001 gave worse results. Further
research should focus on the improvement of the transferability
of OSPARK to other images. Improvements to the OSPARK
algorithms have been suggested.
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